

TPC1000 User Guide

Ultra Capacitors SFF Power Solution

Tri-M Technologies Inc.

Direct: +1.604.814.5069 Email: info@tri-m.com Web: www.tri-m.com

Important Notes

About Tri-M Technologies Inc.

Tri-M Technologies Inc. specialises in embedded computing for rugged environments. Tri-M's innovative solutions are the premiere choice for off-highway vehicles, industrial controls, robotics, military equipment, aerospace technologies, undersea and advanced security products. We offer a wide range of DC-DC converters, CPU boards, hardened enclosures, I/O modules, wireless communication devices, and customized systems. With over 28 years of industry experience, Tri-M is your embedded systems specialist.

Who this Guide is For

This user guide is intended for integrators of embedded system applications. It contains detailed information on hardware and software requirements to interconnect to other embedded devices. Carefully read this user guide before you begin installation. The user should be familiar with practicing safe techniques while making supply or pin connections.

User Guide Revision History

Revision	Date	Description	
A	December 2016	User Guide released	
В	December 2012	Updated command tables	

Trademarks

Trademarks, registered trademarks, and product names are the property of their respective owners and are used herein for identification purposes only.

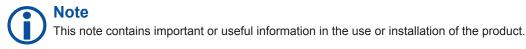
Contact Information

Tri-M Technologies Inc. 101–1530 Kingsway Avenue Port Coquitlam, BC V3C 6N6 Canada

Telephone	Direct: +1.604.814.5069		
Email	Technical Support techsupport@tri-m.com		
	Sales	sales@tri-m.com	
	Information	info@tri-m.com	
Website	www.tri-m.com To submit a request for technical support, please complete the online form at www.tri-m.com/support/contact.html		
	To request an RMA, please complete the online form at www.tri-m.com/support/rma/index.html.		

Technical Support

Business hours: M-F, 8:30am to 5pm PST


Warranty

For warranty information, see "Tri-M Technologies Inc. (Limited Warranty)" on page 36.

Important Safety Instructions

Conventions Used in this Guide

CAUTION

The caution provides information to prevent potential equipment damage or shock hazard.

Electrostatic Discharge (ESD) Precautions

To avoid electrostatic discharge or transient voltage damage to the board, observe the following procedures:

- Before touching the board, discharge your body and any tools you use from electricity.
- Ensure that the board or the unit you want to install the board on is de-engergized before installing.
- Do not touch any devices or components on the board.

CAUTION: Shock Hazard

As soon as the board is connected to a working power supply, touching the board may result in electrical shock, even if the board has not been switched on yet.

Contents

Im	portant Notes	.2
	Contact Information	.2
Im	portant Safety Instructions	.3
	Conventions Used in this Guide	.3
	Electrostatic Discharge (ESD) Precautions	.3
1	Introduction	.7
	Key Specifications and Benefits	.7
	Models	.7
	Options	.7
	Specifications	.8
	Block Diagram	.10
	Dimensions	.11
	Connector Locations	.12
2	Connectors	.13
	Output Power Connector (CN1)	.13
	LED (CN2)	.16
	Input Power Connector (CN3)	.19
	UTIL (CN4)	.20
	Installation	.21
3	Configuration	.22
	Command-line Configuration Setup	.22
	Command-line Configuration FAQ	.23
	Mass Storage Configuration Setup	.24
	Using Using tpc_12v-cfg	.25
	Command-line Configuration	.26
Pro	otection Features	.34
	Thermal Shutdown	.34
	Short Circuit	.34
	Three Stage Transient Protection	.35
Wa	rranty and Product Information	.36
	Tri-M Technologies Inc. (Limited Warranty)	.36
	Disclaimer	.36
Fre	equently Asked Questions (FAQ)	.37

Figures

10
11
12
13
14
14
15
21
22
22
24
25
33
35

Tables

12
14
16
16
16
17
17
17
18
20
27
30
32
27
33
33
34

1 Introduction

TPC1000 is a Small Form Factor (SFF1) DC-DC converter. When combined with external ultra capacitors provides seamless UPS backup capabilities. As a high performance power supply, the TPC1000 can produce 35 watts @ +5VDC or 42 watts @ +12VDC. Please consult Tri-M for support of higher output power levels from the TPC1000.

The PC/104 footprint design supports many low power embedded systems requiring short-term power during a power loss.

TPC1000 has a fully programmable power output of +4.5VDC to +12.6VDC. The rugged design includes transient suppression and locking terminal mating plugs

Key Specifications and Benefits

- Three on-board RGB LEDs display input, output power status, TPC1000 status; support for three offboard RGB LEDs or nine single color LEDs
- "Wide input voltage range of +7V to +33V DC with reverse polarity protection
- Compatible with many industry standard form factors
- High efficiency maximum 96% for optimized power performance
- Locking terminal mating plugs for ease of installation
- Extended operating and storage temperature range -40°C to +85°C (-40°F to +85°F), suited for outstanding performance and reliability in harsh environments
- Tested to meet MIL-STD-810G¹, and surges and transients ISO 7637-2 pulse 5

Models

TPC1000-5	35 watts power supply and smart charging
TPC1000-12	42 watts power supply and smart charging

Options

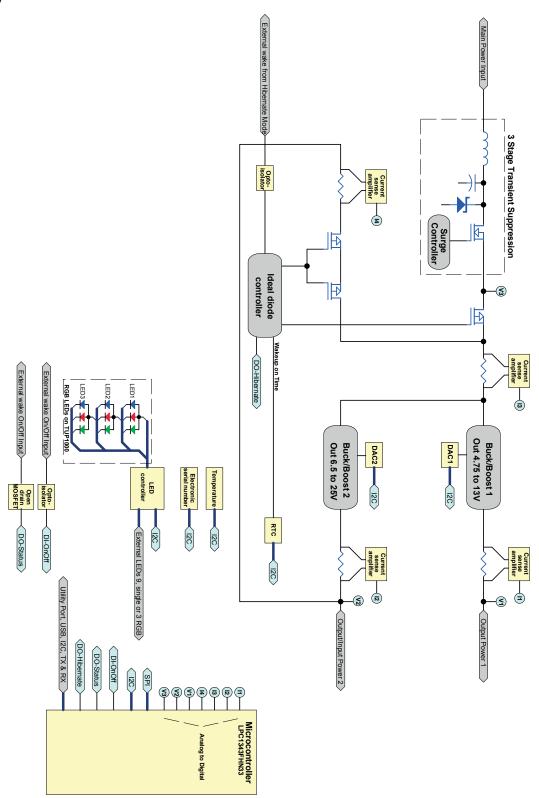
- Conformal Coating (Acrylic CH, Acrylic higher voltage CH1, Silicone CS, Urethane CU) Ruggedized temperature, fungal resistance, humidity, and chemical protection against the elements
- Lead-Tin Soldering (LD)

Tri-M is RoHS compliant. We offer lead-tin soldering for automotive and military aerospace applications. **Cables** To secure the cables to the board, latching cables are available.

For more information about the TPC1000, please call us at +1.604.814.5069 or visit our website at www.tri-m.com.

Specifications

Model	TPC1000-5	TPC1000-12		
Main Input				
Input Voltage Range	+7V to -	+33V DC		
OUT1 Main Output				
Voltage Range	4.75 to 5.25V	11.4 to 12.6V		
Current	7A	3.5A		
Ripple Voltage	10 to 20mV	15 to 50mV		
Load Regulation	100 to 120mV	80 to 100mV		
Line Regulation	<1()mV		
Output Temperature Drift	100)mV		
Efficiency	92%	95%		
OUT2 Charger Input/Output				
Voltage Range	6.5 to	o 25V		
Current (see note 2)	7	'A		
Ripple Voltage	80 to	100mV		
Load Regulation	<35	0mV		
Line Regulation	10 to	20mV		
Output Temperature Drift	150mV			
Efficiency				
Mechanical Specifications				
PC/104 Standard				
Dimensions (see note 3)	90 × 96 ×11mm (3.	.55 × 3.775 × 0.43")		
Weight	80g (2	(2.82oz)		
Environmental Specifications				
Storage Temperature Range	-40°C to +85°C (-40°F to +185°F)			
Operating Temperature Range	-40°C to +85°C (-40°F to +185°F)			
Communication				
USB	CDC and MSC			
LED Indicators		3 on-board RGB LEDs Off-board LEDs: 3 RGB LEDs		
	or 9 single color LEDs			
Configuration				
OS Support	Lir	Linux		



Certifications	Tested to MIL-STD-810G. For more information, see the Certificate of Compliance available at www.tri-m.com
	TRI-MManufactured in ISO9001:2008 ISO 14001:2004 & ANSI/ESD S20.20 Environments

- 1) Based on an internal quiescent current of 1.4 mA when the TPC1000 is in "deep power down " mode.
- The on-board microcontroller will set the current limit of 3.5A or 7A, depending on the input supply capability and whether the output 2 converter is working in buck or boost switching mode.

TRI-M

Block Diagram

Dimensions

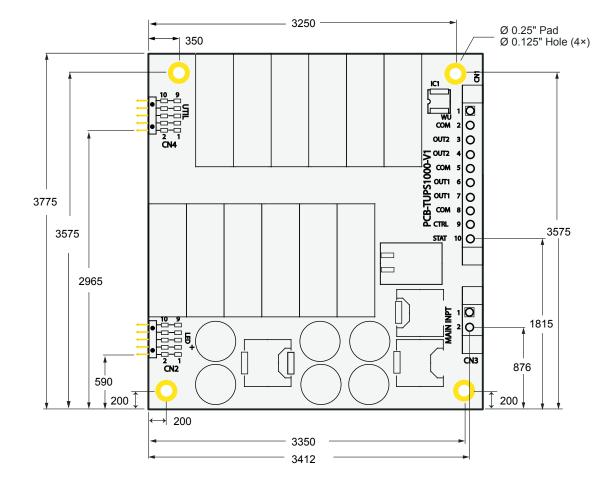
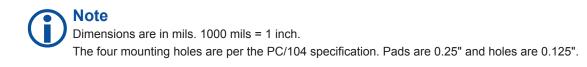



Figure 2: TPC1000 Dimensions

Connector Locations

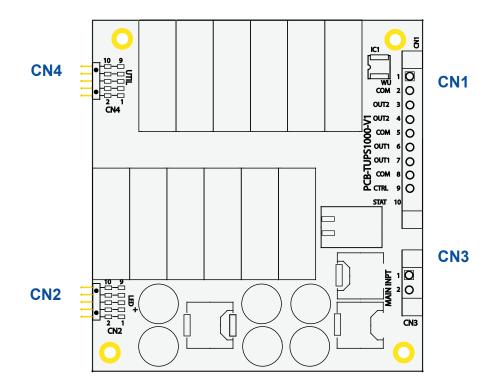


Table 1: CN1 to CN4 Connectors

Label	Description	Mechanical and Wire Specifications	Page
CN1	Power and control signals	 10 position socket, 3.81 mm, right angle Locking terminal mating plug, Phoenix Contact 1827787, 14 to 30 AWG (UL), 8A 	See page 13.
CN2	LED	 10 position shrouded pin header, 2x5 right angle Locking mating plug FCI 90311-010LF Female wire crimps FCI 77138-101LF 	See page 16.
CN3	Main input power, +7V to +33V DC	 2 position socket, 3.81 mm, right angle Locking terminal mating plug Phoenix Contact 1827703, 14 to 30 AWG (UL), 8A 	See page 19.
CN4	UTIL	 10 position shrouded pin header, 2x5 right angle Locking mating plug FCI 90311-010LF Female wire crimps FCI 77138-101LF 	See page 20.

2 Connectors Output Power Connector (CN1)

CN1 provides terminal socket connections for the output voltages and signals. The outputs offer +5VDC @ 7A maximum and +12VDC @ 3.5A maximum. The screw terminal plugs for CN1 and CN3 connectors accept 16 to 28 AWG wires.

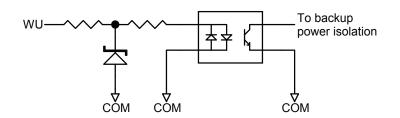
Figure 4: Output Power Connector (CN1)

C	N1	
1	\ominus	WU
2	⊖	COM
3	\ominus	OUT2
4	⊖	OUT2
5	⊖	COM
6	\ominus	OUT1
7	\ominus	OUT1
8	\ominus	COM
9	⊖	CTRL
10	\ominus	STAT

Table 2:	Outputs	&	Signals	for	CN1
	Outputo	~	orginalo		

	Outputs & Signals (CN1) Page				
Pin	Signal	Description			
CN1-1	WU	WU is an active high optocoupled input that wakes up the TPC1000 from hibernate mode.	See page 14		
CN1-2	COM (Common)	TPC1000 electrical common			
CN1-3	OUT2	OUT2 is for connection to external ultra capacitor modules.	See page 14		
CN1-4	OUT2	External ultra capacitors are charged and discharged through this connection. Connected ultra capacitors are responsible for their own "balancing" and protection against individual high voltages per ultra capacitor. Note: The TPC1000 OUT2 charger port must be configured to supply the correct maximum voltage of the connected ultra capacitors.			
CN1-5	COM (Common)	TPC1000 electrical common			
CN1-6	OUT1	Output from the Output1 regulator.	See page 14		
CN1-7	OUT1				
CN1-8	COM (Common)	TPC1000 electrical common			
CN1-9	CTRL	CTRL is an optocoupled input that provides remote On/Off control.	See page 14		
CN1-10	STAT	STAT is an open drain FET with a series 1.24K Ω series resistor.	See page 15		

WU (CN1-1)


WU is an active high optocoupled input that wakes up the TPC1000 from hibernate mode. The WU signal must be a momentary pulse long enough (TBD) to initialize the microprocessor on the TPU1000.

CAUTION

Failure to remove the WU signal after the microprocessor is initialized prevents the TPC1000 from going into hibernate mode.

OUT2 (CN1-3, CN1-4)

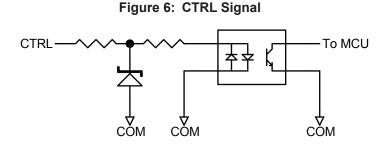
OUT2 is for connection to external ultra capacitor modules. External ultra capacitors are charged and discharged through this connection. Connected ultra capacitors are responsible for their own "balancing" and protection against individual high voltages per ultra capacitor. Note: The TPC1000 OUT2 charger port must be configured to supply the correct maximum voltage of the connected ultra capacitors.

CAUTION

Ensure the Output2 regulator is configured to supply no more than the maximum voltage rating of any connected external ultra capacitors.

OUT1 (CN1-6, CN1-7)

Output from the Output1 regulator. The Output1 can be configured to provide from 4.5 to 12.6V.

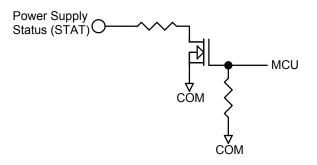


CAUTION

Ensure the Output1 regulator is configured to supply the correct voltage to any connected equipment.

CTRL (CN1-9)

CTRL is an active high optocoupled input that provides remote On/Off control. CTRL can be configured for maintained contacts (such as ignition switches) or momentary contracts (such as push buttons). CTRL can also be configured for polarity of operation. The input range is 7V to 33V DC.



STAT (CN1-10)

STAT is an open drain FET with a 1.24K Ω series resistor. STAT is active low when OUT1 is On and no shutdown is pending. A pending shutdown may occur for many reasons including (but not limited to) main power loss, host generated request, CTRL and low backup power. When a shutdown is pending (for any reason) the STAT will go into high impedance and remain in that condition until the OUT1 turns On again.

LED (CN2)

Three RGB status LEDs are located on TPC1000. The LEDs provide signal activity for

- power failure
- micro-controller (MCU) heartbeat
- input power status
- output power status.

TPC1000 supports three off-board RGB LEDs or nine single colour LEDs.

Table 3: Off-board RGB LEDs

Off-board RGB LEDs				
Pin	Signal	Pin	Signal	
1	VccLED (Connect to anode of LEDs)	2	LED 4 Green cathode	
3	LED 4 Red cathode	4	LED 4 Blue cathode	
5	LED 5 Green cathode	6	LED 5 Red cathode	
7	LED 5 Blue cathode	8	LED 6 Green cathode	
9	LED 6 Red cathode	10	LED 6 Blue cathode	

Table 4: Auto Mode Function

LED#	Auto Mode Function
LED1	Input Power Status
LED2	TPC1000 Status
LED3	Output Power Status
LED4	Input Power Status
LED5	TPC1000 Status
LED6	Output Power Status

Table 5: TPC1000 Status

LED Colour	TPC1000 Status	LED Duty Cycle Percent		
Blinking Green	The ultra capacitor bank is at full charge status.	10		
Blinking Yellow	The ultra capacitors are being charged. 10			
Blinking Red	90			
The LED blinks at a steady 1 Hz as a heart beat indicator. If no alarm condition exists the LED will blink Green or Yellow with a duty cycle of 10 percent on 90 percent off. If an alarm condition exists the LED will blink with a duty cycle 90 percent Red with the 10 percent displaying the ultra capacitor status.				

Table 6: Input Power Status

LED Colour	Input Power Status	LED Duty Cycle Percent		
Steady Green	The input voltage and temperature are within operating range.	100		
Blinking Red	The input voltage is too high.	90		
Blinking Blue	The input voltage is too low.	90		
Blinking Red	The temperature is too high.	10		
Blinking Blue The temperature is too low.		10		
Steady Red Both the input voltage and temperature are too high. 100				
Example: If the input voltage is too low but the temperature is too high the LED will blink 90 percent Blue and 10 percent Red.				

Table 7: Output Power Status

LED Colour	Output Power Status	LED Duty Cycle Percent
Steady Green	The output voltage is within range.	100
Blinking Green	The output voltage is within range, but the TPC1000 is in shutdown, and the output will turn off after the programmed delay interval.	90
Blinking Green	TPC1000 is in start up mode and will turn on the output after the programmed delay interval.	10
Steady Red	The output is On and outside the calibration range.	100
Steady Orange	The output is On, not in range but can be calibrated.	100
Black (Off)	The output is off and the TPC1000 is not in start up mode.	100

Each RGB LED consists of three color diodes (Red, Green and Blue). A specific color is created by adjusting the ratios of current through the three color diodes. The brightness of the RGB LED is varied by increasing or decreasing the current through the color diodes but maintaining the ratios of the current. The current for each color diode is controlled a 32bit register mapped as 00.RR.GG.BB. The current for each color diode can be varied from 0 to 20ma in 65 steps (0x00 to 0x3F).

Table 8: RGB Color Mappings

RGB Color	32bit color control register mapped as 00.RR.GG.BB	Current through each color diode (ma)		
RGB Color		Red	Green	Blue
Red	0x001F0000	9.84	0.00	0.00
Green	0x00000F00	0.00	4.76	0.00
Blue	0x000000F	0.00	0.00	4.76
Yellow	0x000C0500	3.81	1.59	0.00
Orange	0x00180200	7.62	0.63	0.00

Off-board LEDs are supported as either three RGB or nine single color LEDs. This allows the remote mounting of LEDs on the enclosure to indicate either the power supply status or status of the host CPU functions.

The three on-board RGB LEDs and the three off-board LEDs (or nine single colour LEDs) can by controlled by the host software through the USB port.

Off-board Single Color LEDs			
Pin	Signal		
1	VccLED (Connect to anode of LEDs)		
2	LED 4 cathode		
3	LED 5 cathode		
4	LED 6 cathode		
5	LED 7 cathode		
6	LED 8 cathode		
7	LED 9 cathode		
8	LED 10 cathode		
9	LED 11 cathode		
10	LED 12 cathode		

Table 9: Off-board Single Color LEDs

Input Power Connector (CN3)

The CN3 connector provides terminal socket connections for input power.

For enhanced protection, the TPC1000 provides transient suppressors, active input clamping, reverse polarity protection, and current limiting. For more information, see the "Protection Features" on page 34.

CN3					
	1 =				
l.	nput Power (CN3)				
Pin	Signal				
CN3-1	+7V to +33V DC				
CN3-2	СОМ				
CN3-1 +7V to +33V DC					

CAUTION: Equipment Damage

Although the TPC1000 has reverse polarity protection, make sure that the polarities are correct in order to avoid damaging the input power supply. The supply must be correctly fused.

UTIL (CN4)

The UTIL connector CN4 provides access to the I2C (SDA & SCL), asynchronous (TX & RX) and USB (USB D- and D+) serial signals.

- The I2C serial signals can be used to expand the functionality and monitoring of the TPC1000.
- The USB serial signals can be used to reprogram and update the firmware and profile and provides a command-line communications port (USB CDC mode) to read and set operating values and parameters in the TPC1000.
- The TX and RX port operates as a command-line communications port (USB CDC mode) to read and set operating values and parameters in the TPC1000. NOTE: TX & RX signals are TTL level (SV) and require a RS232 buffer before they can be safely connected to an RS232 port.

Util (CN4)				
	Тор	Bottom		
Pin	Signal	Pin	Signal	
1	SDA	2	SCL	
3	TX (3.3V TTL)	4	ISPX*	
5	RX (3.3V TTL)	6	USB D-	
7	INPUT/OUT2 Power (Limit to maximum 1A)	8	USB D+	
9	COM (Common)	10	USB Vcc	

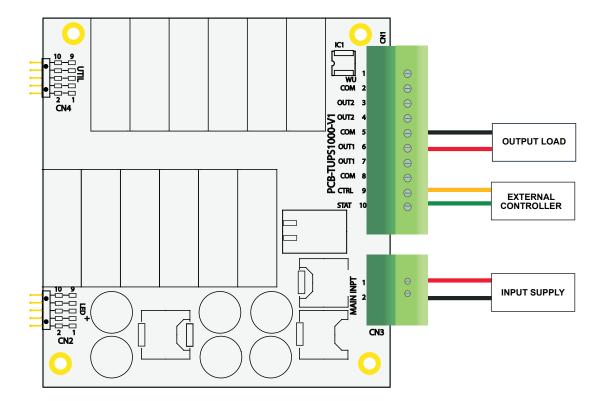
Table 10: Util CN4 Connector

*Connecting ISPX to ground puts the USB port in firmware replacement mode. Leaving the ISPX pin unconnected lets you edit the settings using the config.txt file.

The 'config.txt' files will be overwritten if the 'firmware.bin' is entirely rewritten, and the disk containing the config.txt resides in the upper 4KB of the 'firmware.bin'

2 Connectors and Installation

Installation

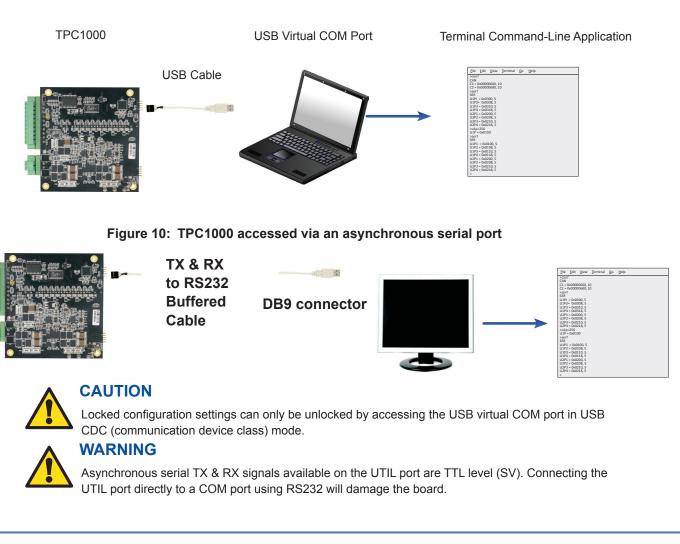

TPC1000 features locking terminal mating plugs for easy installation. The screw terminal plugs for CN1 and CN3 connectors accept 16 to 28 AWG wires.

Connection Diagram

CAUTION: Equipment Damage

Although the TPC1000 has reverse polarity protection, make sure that the polarities are correct in order to avoid damaging the input power supply. The supply must be correctly fused.

Figure 8: Connection Diagram


3 Configuration

The configuration setup uses a jumperless embedded design to access the board without having to dissemble and reassemble the stack. The TPC1000 also features a configuration lock to secure your settings from undesirable changes.

There are three methods to configure the TPC1000, command-line configuration setup and mass storage configuration setup via the USB port or the command-line configuration configuration through the asynchronous serial port. Please refer to the UTIL connector CN4 details on connecting to the USB and asynchronous serial ports."

Command-line Configuration Setup

Connect via USB CDC mode (communication device class) to enable a USB virtual COM Port, as shown Figure 9. A terminal command-line application is used to configure the device.

Figure 9: TPC1000 accessed using a USB cable as a Virtual COM Port

1. What are the basic steps and commands to configure a TPC1000-5 for my application? My application has an ignition switch and I want the outputs to turn on after the power is stable (allow 5 seconds for cranking). I require a little more output voltage (5.15V) due to voltage drop on the wires to the CPU board. Shutdown should occur 30 seconds after main power is lost.

- Step a) Configure the CTRL input (CN1-9)
 - The TPC1000 can be configured using a terminal on the USB CDC port or on the TX/RX serial port.
 - The CTRL input can be configured for a maintained action switch such as an ignition with "SDA=Ignition".
 - The polarity of the CTRL input can be set for ignition switch operation with "SDP=Positive".
 - Step b) Configure the 5 second delay on delay
 - Output 1 can be delayed from turning on for 5 seconds by "SUDL=5000".
 - Note: Other conditions must be met for Output 1 to turn on such as Vin in range, temperature in range ultracapacitors charged to BMIN.
- Step c) Calibrate the output voltage to 5.15 volts
 - Output 1 voltage can be calibrated to 5.15V by "VSET=5150".
- Step d) Set Output 1 to turn off after 30 seconds when main power is lost
 - The 30 second delay to turn off is set with "SDDL=30000".
 - Note: The 30 second delay off delay will occur when any of the shut down conditions occur such as Vin not in range, temperature out of range, ultracapacitors discharged below BMIN or ignition turns off.
- 2. How does my application determine when and why the TPC1000 will turn off Output 1?
 - Step a) Determine if Output 1 is in the process of turning off:
 - The TPC1000 can be polled to determine if Output 1 is in a timed shut down mode with "SDST?"

When Output 1 is in the timed shut down mode the TPC1000 will return "SDST=ENABLE" to that query. Step b) Determine the length of time before Output 1 turns off:

- The remaining time before Output 1 turns off can be determined with "SDDC?". The TPC1000 will respond with the remaining time in msec (ex SDDC=15000 for 15 seconds left to turning off Output 1).
- Step c) Determine why Output 1 is turning off:
 - The condition that initiated the shut down can be determined with "SDFL?". Possible responses are:
 - "SDFL=SD" cause is CTRL input
 - "SDFL=MV" cause is Main Voltage
 - "SDFL=BV" cause is Battery Voltage
 - "SDFL=TP" cause is Temperature
 - "SDFL=HC" cause is Host Control
 - "SDFL=None", no shut down is in progress

.

Mass Storage Configuration Setup

Once you have configured the settings using the command-line configuration setup, lock your configuration profile settings and export to a 'tpc_XXv.cfg' file, where XX is the nominal voltage (5 for 5V, 12 for 12V ..., AD for adjustable).

Using the USB MSC (mass storage device class) mode, you can transfer the configuration profiles between your PC and the TPC1000, as shown in Figure 11

Figure 11: TPC1000 configured as a Mass Storage Device

CAUTION

Although the device is recognized as a mass storage device, space is limited to approximately 4KB. The intended use is strictly for storing the configuration file, 'tpc_XXv.cfg. The mass storage memory should not be used for any other purpose; if any other files are present, those files will be lost when the system power cycles.

Using tpc_12v-cfg

Typical example contents of the "tpc_12v.cfg". Note: The TPC1000 firmware will accept abbreviated response values (as shown in file listing below). For example "I = Ignition", "E=Enable", "N=Negative", "D=Disable", "L=Locked" and "A=Auto". Note also that the same abbreviation can have different values for different commands, ex: "U=Unlocked" for LCK command and "U=Uart" for DBP command.

Note: The contents of "tpc_12v.cfg" can be edited and saved back to the TPC1000 to implement configuration changes.

#Configuration LED HBT=1000 HBD=10 LED1=0x00000000 LED2=0x00000000 LED3=0x00000000 LED4=0x00000000 LED5=0x00000000 LED6=0x00000000 LED=A BLI=D COMMUNICATION WMSK=0x00000000 AMSK=0x00000000 DBG=D DBP=U SPC=E UART UBR=115200 UPRT=0x003E0A0D UDIV=0x0000A0D	UEMF=Disable UCMD=E UECHO=E UXON=D USB CDC/ACM CBR=115200 CPRT=0x003E0A0D CDIV=0x0000A0D CEND=0x000A0A0D CEND=0x000A0A0D CWMF=Disable CAMF=Disable CAMF=Disable CAMF=Disable CEMF=Disable CEMF=Disable CEMF=Disable CEMF=Disable CEMD=E CECHO=E CXON=D OUTPUT VSET=12075 OUTM=A OUTC=D CHARGER PSM=100000000 ISM=8000 BMIN=12000 BMAX=13000	BIS=2000 PCHM=50000000 BIE=50 CHTO=10000 MTBR=Disable DBRC=30000 CTLH=Disable BCDV=Disable BCDV=Disable BVDN=Disable BVDN=Disable BVDP=Disable CHM=T STARTUP SUTH=343150 SUTL=243150 SUVH=31000 SUVL=8500 BSUV=12000 MVRD=1000 SUDL=1000 SUDL=1000 SDSU=E MVSU=E BVSU=E	SHUTDOWN TMIN=238150 TMAX=353150 BSDV=8000 VMIN=8000 VMAX=32000 DMAX=Disable MVDB=1000 SDDL=10000 SDSD=E MVSD=E BVSD=E TPSD=E HCSD=E STATUS PSTD=Disable FSD=E FOV=E PSTA=L CONTROL WDC=Disable SDS=100 SDP=N SDA=I
UWMF=Disable UAMF=Disable	BMAX=13000 BOCV=Disable BSTP=50	BVSU=E TPSU=E HCSU=E	SDA=I ST=D LCK=U

Figure 12: tpc_12v.cfg sample contents

3 Configuration

Command-line Configuration

After a connection to the TPC1000 is established a terminal command-line application can be used to read and write values.

Table 11: User Commands

Command	Command ?	Example TPC1000 Response	Units and Values	Description
VER	ver?	01.00 - Nov 2 2012	N/A	version of the code
PN	pn?	TPC1000_5V (4747mV ~ 5253mV)	N/A	product part number with the output 1 range
SN	sn?	F50000004EFE036D53360ABB03031B07	32 Hex characters	Serial number
RT	rt?	0:00:01:32	Days:HH:MM:SS	Runtime
ОТ	ot?	0:00:01:12	Days:HH:MM:SS	Time the output is ON
MLF	mlf?	MLF = 54413	#	Number of times the main loop is executed per second
SDX	sdx?	SDX = high	low, high	SD Status
TRD	trd?	TRD = 297524	mK (milli Kelvin)	Temperature
SECI	seci?	SECI = 19	mA	Discharging Current
MAINI	maini?	MAINI = 98	mA	Main Input Current
MAINV	mainv?	MAINV = 14995	mV	Main input Voltage
MAINP	mainp?	MAINP = 12722688	uW	Main Input Power
MAIND	maind?	MAIND = 123	mV	Delta between highest and lowest Vin sample
MDRP	mdrp?	MDRP=52	mV	Delta between 2 consecutive MAINV measurement
OUTV	outv?	OUTV = 5000	mV	Output 1 Voltage
OUTI	outi?	OUTI = 27	mA	Output 1 Current
OUTP	outp?	OUTP = 23456879	uW	Output 1 Power
OMAX	omax?	OMAX = 5253	mV	Output 1 maximum voltage limit
OMIN	omin?	OMIN = 4747	mV	Output 1 minimum voltage limit
BAKI	baki?	BAKI = 119	mA	Charging Current
BAKV	bakv?	BAKV = 14911	mV	Backup Voltage
BAKP	bakp?	BAKP = 21580653	uW	Charging Power
BVT	bvt?	BVT = 25200	mV	Charge termination voltage
ICHM	ichm?	ICHM=3500	mA	Maximum current allowed for the charger

To enter a User Command using a terminal command-line application, type the command followed by a question mark '**?'**, then press the **Enter key** to return the value.

www.tri-m.com

After a connection to the TPC1000 is established a terminal command-line application can be used to read and write values.

Command	Command ?	Example TPC1000 Response	Units and Values	Description
TRBC	trbc?	TRBC = 45443678	ms	Time remaining before next charge cycle
TRBR	trbr?	TRBR = 12344	ms	Time remaining before re-allowing charge
DICH	dich?	DICH = 287	mA	Negative delta charge current
DVCHN	dvchn?	DVCHN = 48	mV	Negative delta charge voltage
DVCHP	dvchp?	DVCHP = 56	mV	Positive delta charge voltage
PSST	psst?	PSST = ON	ON, OFF	Output 1 state
CHST	chst?	CHST = OFF	ON, OFF	Charger state
SUST	sust?	SUST = Disable	Enable, Disable	Startup state
CHSC	chsc?	CHSC=22	#	Record # of steps required by the last charge
SDST	sdst?	SDST = Disable	Enable, Disable	Shutdown state
PBST	pbst?	PBST = high	high, low	Push Button / Ignition input state
SUFL	sufl?	SUFL = SD	SD, ????, None	Startup event (event that initiated the startup)
SDFL	sdfl?	SDFL = None	SD, ????, None	Shutdown event (event that initiated the startup)
LSUF	lsuf?	LSUF = SD	SD, ????, None	Last recorded Startup event
LSDF	lsdf?	LSDF = MV	SD, ????, None	Last recorded Shutdown event
CCFG	ccfg?	CCFG = 0x00030301	32bit hex	track the communication register flags
UERR	uerr?	UERR = 0x0000000	32bit hex	Track the UART status error
UWDC	uwdc?	UWDC = 9876	ms	Track time before next Warning message on UART port
CWDC	cwdc?	CWDC= 11367	ms	Track time before next Warning message on CDC port
UADC	uadc?	UADC=2345	ms	Track time before next Alarm message on UART port
CADC	cadc?	CADC=4578	ms	Track time before next Alarm message on CDC port
UEDC	uedc?	UEDC=23456	ms	Track time before next Error message on UART port
CEDC	cedc?	CEDC= 7893	ms	Track time before next Error message on CDC port

To enter a User Command using a terminal command-line application, type the command followed by a question mark '**?'**, then press the **Enter key** to return the value.

www.tri-m.com

Assign Commands use "=" to enter a new value and "?" to request the current value.

Table 12: User Assign Commands

Command	Example Command ? Or =	TPC1000 Response	Units, Value and Range	Description
HBT	hbt?	HBT = 1000	ms	LED flashing time period
HBD	hbd?	HBD = 10	ms	LED flashing duty-cycle
LED1	led1?	LED1 = 00000000	32 bit hex	LED1 RGB color and brightness
	led1=0x00060201	LED1 = 00060201	0x00RRGGBB	
LED2	led2?	LED2 = 00000000	32 bit hex	LED2 RGB color and brightness
	led2=0x00060201	LED2 = 00060201	0x00RRGGBB	
LED3	led3?	LED3 = 00000000	32 bit hex	LED3 RGB color and brightness
	led3=0x00060201	LED3 = 00060201	0x00RRGGBB	
LED4	led4?	LED4 = 00000000	32 bit hex	LED4 RGB color and brightness
	led4=0x00060201	LED4 = 00060201	0x00RRGGBB	
LED5	led5?	LED5 = 00000000	32 bit hex	LED5 RGB color and brightness
	led5=0x00060201	LED5 = 00060201	0x00RRGGBB	
LED6	led6?	LED5 = 00000000	32 bit hex	LED6 RGB color and brightness
	led6=0x00060201	LED6 = 00060201	0x00RRGGBB	
WMSK	wmsk?	WMSK = 0x0000000F	32bit hex	Mask warning messages
AMSK	amsk?	AMSK = 0x00000001	32bit hex	Mask alarm messages
UBR	ubr?	UBR = 115200	baud	UART Baud Rate
UPRT	uprt?	UPRT = 0x003E0A0D	0xC4C3C2C1	up to 4 characters used as prompt for RS232 communication
UDIV	udiv?	UDIV = 0x00000A0D	0xC4C3C2C2	up to 4 characters used as divider for RS232 communication (commands returning multiple values like "celv"))
UEND	uend?	UEND = 0x000A0A0D	0xC4C3C2C3	up to 4 characters used as command termination for RS232 communication
UWMF	uwmf?	UWMF = 20000	ms	Warning Message Frequency for UART port, 0 = disable
UAMF	uamf?	UAMF = 10000	ms	Alarm Message Frequency for UART port, 0 = disable
UEMF	uemf?	UEMF = 5000	ms	Error Message Frequency for UART port, 0 = disable
CBR	cbr?	CBR = 115200	baud	CDC/ACM Baud Rate
CPRT	cprt?	CPRT = 0x003E0A0D	0xC4C3C2C1	up to 4 characters used as prompt for CDC/ACM communication
CDIV	cdiv?	CDIV = 0x00000A0D	0xC4C3C2C2	up to 4 characters used as divider for CDC/ACM communication (commands returning multiple values like "celv"))
CEND	cend?	CEND = 0x000A0A0D	0xC4C3C2C3	up to 4 characters used as command termination for CDC/ACM communication

Assign Commands use "=" to enter a new value and "?" to request the current value.

Command	Example Command ? Or =	TPC1000 Response	Units, Value and Range	Description
CWMF	cwmf?	CWMF = 15000	ms	Warning Message Frequency for CDC port, 0 = disable
CAMF	camf?	CAMF = 12000	ms	Alarm Message Frequency for CDC port, 0 = disable
CEMF	cemf?	CEMF = 8000	ms	Error Message Frequency for CDC port, 0 = disable
VSET	vset?	VSET = 5000	mV	Output 1 voltage setpoint
BMIN	bmin?	BMIN = 14400	mV	Ultracapacitor bank minimum voltage
BMAX	bmax?	BMAX = 14800	mV	Ultracapacitor bank maximum voltage
BOCV	bocv?	BOCV = 15000	mV	Battery Open Circuit Voltage
BSTP	bstp?	BSTP = 50	mV	Charger minimum voltage step increase
BIS	bis?	BIS = 1000	mA	Maximum Charging Current
PCHM	pchm?	PCHM=25000000	uW	Maximum Charging Power
BIE	bie?	BIE = 50	mA	Charge termination current
BID	bid?	BID = 10	mA	Charge termination delta current
BVDN	bvdn?	BVDN = 100	mV	Charge termination negative delta voltage
BVDP	bvdp?	BVDP = 100	mV	Charge termination positive delta voltage
СНТО	chto?	CHTO = 10000	ms	maximum time allowed between 2 charge steps
PSM	psm?	PSM = 100000000	uW	Maximum Power available from source
ISM	ism?	ISM = 8000	mA	Maximum current available from source
MTBR	mtbr?	MTBR = 86400000	ms	Maximum Time Before Recharge (next cycle)
DBRC	dbrc?	DBRC = 30000	ms	Minimum Delay Before Re-allowing Charge
CTLH	ctlh?	CTLH = 343150	mK (milli Kelvin)	Charge Temperature Limit Low
CTLL	ctll?	CTLL = 243150	mK (milli Kelvin)	Charge Temperature Limit High
BCDV	bcdv?	BCDV = 10800	mV	Battery Connection Detect Voltage
SUTH	suth?	SUTH = 355650	mK (milli Kelvin)	Temperature that initiates a startup when returning to normal temperature from an over temperature condition
SUTL	sutl?	SUTL = 233650	mK (milli Kelvin)	Temperature that initiates a startup when returning to normal temperature from an under temperature condition
SUVH	suvh?	SUVH = 32500	mV	Main input voltage that initiates a startup when returning to normal from an over voltage condition
SUVL	suvl?	SUVL = 7050	mV	Main input voltage that initiates a startup when returning to normal from an under voltage condition

Assign Commands use "=" to enter a new value and "?" to request the current value.

Command	Example Command ? Or =	TPC1000 Response	Units, Value and Range	Description
BSUV	bsuv?	BSUV = 13500	mV	Ultracapacitor bank voltage that initiates a startup
MVRD	mvrd?	MVRD = 1000	ms	Main Voltage recovery delay
SUDL	sudl?	SUDL = 1000	ms	Startup delay
TMIN	tmin?	TMIN = 233150	mK (milli Kelvin)	Minimum operating temperature
TMAX	tmax?	TMAX = 358150	mK (milli Kelvin)	Maximum operating temperature
BSDV	bsdv?	BSDV = 7000	mV	Ultracapacitor bank voltage that initiates a shutdown
VMIN	vmin?	VMIN = 7000	mV	Main input minimum voltage limit
VMAX	vmax?	VMAX = 33000	mV	Main input maximum voltage limit
DMAX	dmax?	DMAX = 500	mV	Main Input maximum allowed voltage differential
MVDB	mvdb?	MVDB = 1000	ms	Main Voltage debounce
SDDL	sddl?	SDDL = 500000	ms	Shutdown delay
PSTD	pstd?	PSTD = 1000	ms	PS-STAT output active duration
WDC	wdc?	WDC=1000	ms	Watchdog counter
SDS	sds?	SDS = 100	ms	Time to validate "STAT-SDX"
SUDC	sudc?	SUDC = 0	ms	Startup Counter value
SDDC	sddc?	SDDC = 0	ms	Shutdown Counter value
TIME	time?	TIME = 06:15:27	HH:MM:SS	RTC time
DATE	date?	DATE = 12/11/26	YY/MM/DD	RTC date
WUT	wut?	WUT = 06:15:27	HH:MM:SS	RTC alarm time (TPC1000 wakeup from hibernation)
WUD	wud?	WUD = 12/11/26	YY/MM/DD	RTC Alarm date (TPC1000 wakeup from hibernation)
PWD	pwd?	PWD = 00000000	32bit hex	password to allow unlock profile
CREG	creg?	CREG = 00000103		assign / return value of the control register (register where the flag command are save, see CREG sheet)
EREG	ereg?	EREG = 00000000		report system failure (see EREG sheet), each flag can be reset by writing a 1
WREG	wreg?	WREG = 0x00000002	32bit hex	report system warning (see WREG sheet), each flag can be cleared by writing a 1
AREG	areg?	AREG = 0x00000001	32bit hex	report system alarm (see AREG sheet), each flag can be cleared by writing a 1
DREG	dreg?	DREG = 0x00050000	32bit hex	assign / return value of the debug register (register where the debug flag save, see DREG sheet)

Assign Commands use "=" to enter a new value and "?" to request the current value.

Command	Example Command ? Or =	TPC1000 Response	Units and Values	Description
LED	led?	LED = Auto	Auto, Manual	LED control
BLI	bli?	BLI = Disable	Disable, Enable	Enable / Disable Battery Low Indicator
DBG	dbg?	DBG = Disable	Disable, Enable	Additional debug messages
DBP	dbp?	DBP = UART	Uart, Cdc	Debug port
SPC	spc?	SPC = Enable	Disable, Enable	Enable / Disable space charac- ter in returned message ("CMD = VAL" vs "CMD=VAL")
UCMD	ucmd?	UCMD = Enable	Disable, Enable	Enable / Disable command name in returned message on the RS232 communication port ("CMD = VAL" vs "VAL")
UECHO	uecho?	UECHO = Enable	Disable, Enable	Enable /Disable the echo on the RS232 port
UXON	uxon?	UXON = Disable	Disable, Enable	Enable / Disable XON/XOFF on the RS232 port NOT YET IMPLEMENTED
CCMD	ccmd?	CCMD = Enable	Disable, Enable	Enable / Disable command name in returned message on the CDC/ACM communication port ("CMD = VAL" vs "VAL")
CECHO	cecho?	CECHO = Enable	Disable, Enable	Enable /Disable the echo on the CDC/ACM port
CXON	cxon?	CXON = Disable	Disable, Enable	Enable / Disable XON/XOF on the CDC/ACM port NOT YET IMPLEMENTED
OUTM	outm?	OUTM = Auto	Auto, Manual	Output 1 Mode
OUTC	outc?	OUTC = Enable	Disable, Enable	Output 1 control
CHM	chm?	CHM = Terminated	Continuous / Termi- nated	Charger operating mode
SDSU	sdsu?	SDSU = Enable	Disable, Enable	Enable / Disable Start up on SD (CTRL input)
MVSU	mvsu?	MVSU = Enable	Disable, Enable	Enable / Disable Start up on Main input Voltage
BVSU	bvsu?	BVSU = Enable	Disable, Enable	Enable / Disable Start up on Battery Voltage
TPSU	tpsu?	TPSU = Enable	Disable, Enable	Enable / Disable Start up on Temperature

Table 13: User Flag Commands

Assign Commands use "=" to enter a new value and "?" to request the current value.

Command	Example Command ? Or =	TPC1000 Response	Units and Values	Description
HCSU	hcsu?	HCSU = Enable	Disable, Enable	Enable / Disable Start up on Host Command (SUDC)
SDSD	sdsd?	SDSD = Enable	Disable, Enable	Enable / Disable Shutdown on SD (CTRL input)
MVSD	mvsd?	MVSD = Enable	Disable, Enable	Enable / Disable Start up on Main input Voltage
BVSD	bvsd?	BVSD = Enable	Disable, Enable	Enable / Disable Start up on Battery Voltage
TPSD	tpsd?	TPSD = Enable	Disable, Enable	Enable / Disable Start up on Temperature
HCSD	bcsd?	HCSD = Enable	Disable, Enable	Enable / Disable Shutdown on Host Command (SDDC)
FSD	fsd?	FSD = Enable	Disable, Enable	Enable / Disable PSST activat- ed on Shutdown (STAT output)
FOV	fov?	FOV = Enable	Disable, Enable	Enable / Disable PSST activat- ed on Output Voltage being off range (STAT output)
PSTA	pstd?	PSTP = High	high, low	PS-STAT output active polarity
SDP	sdp?	SDP = Negative	Positive, Negative	SD input polarity (CTRL input)
SDA	sda?	SDA = Ignition	Ignition, Push button	SD input function (CTRL input)
ST	st?	ST = Allow	Deny, Allow	Future Production Self Test
LCK	lck?	LCK = Unlocked	Unlocked, Locked	Lock, Unlock changes. Valid password required before unlock

Table 14: User Profile Demands

Command	Command ?	Example TPC1000 Response	Units and Values	Description
UPD	upd	hardware initialized		Update the variable used at initialization, all others are updated in realtime
STD	std	tup_12v.cfg updated		Save the current settings in the config file (ALL parameters)
RLD	rld	Configuration loaded from tup_12v.cfg		Reload the settings from the config file
SAV	sav	tup_12v.cfg updated		Save the current settings in the config file (ONLY parameters changed from default value)

Control Register Bits Details

Bit#	Bit = 0	Bit = 1	Description
0	Negative	Positive	SD polarity
1	Ignition	Push Button	SD action
2	Auto	ON	OUTPUT 1 control
3	Auto	Manual	LED control
4 28			Future
29	UART (TX/RX)	CDC (USB)	Debug port
30	Disable	Enable	Additional debug messages
31	Unlock	Lock	Lock/Unlock flag, Password has to be entered before Unlock.

Table 15: Control Register Bits Details

Error Register Bits Details

Bit #	Description
0	Serial number reading error
1	RTC registers initialization error
2	RTC reading error
3	RTC writing error
4	LED controller writing error
57	Future
8	UART communication erro
9 15	Future
16	DAC1 (OUT1) initialization error (also set if max/min voltage limit is not defined)
17	DAC2 (OUT2) writing error
18	Temperature sensor registers initialization error
19	Temperature sensor reading error
18 27	Future
28	Input Voltage configuration error
29	Ultracapacitor bank voltage configuration error
30	Temperature configuration error
31	Any configuration error

Protection Features

The TPC1000 has a number of enhanced protection features.

Thermal Shutdown

If the environmental conditions raise the internal temperature above the extended operating temperature range of -40°C to +85°C (-40°F to +185°F), the TPC1000 automatically shuts down until the internal temperature returns to a safe temperature.

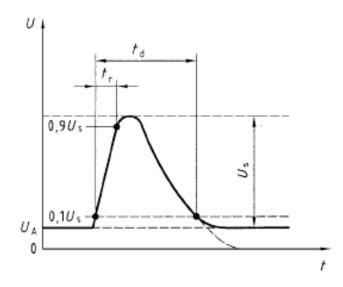
Short Circuit

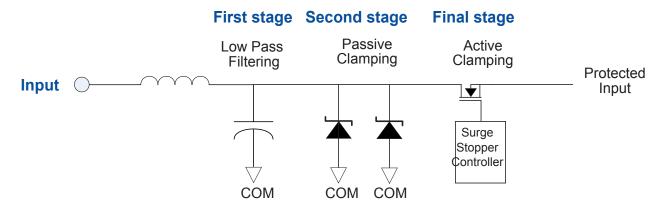
If a short circuit condition exists, the system will shut down for a specific time-out period until the short-circuit condition is removed. Short circuit protection prevents the internal temperature from rising to excessive levels while maintaining system integrity for an indefinite short circuit output condition.

Three Stage Transient Protection

TPC1000 is designed to meet ISO 7637-2:2011 pulse 5 load dump standards, which specifies the electrical transient protection of equipment installed on passenger cars and commercial vehicles fitted with 12V or 24V electrical systems.

Figure 13: Typical Load Dump Transient and Pulse 5 Waveform*




Table 17: Unsuppressed Load Dump Pulse

Unsuppressed Load Dump Pulse					
Parameter 12V System 24V System					
Us	65V – 87V	123V – 174V			
R _i	$0.5\Omega - 4\Omega$	1Ω – 8Ω			
t _d	t _d 40ms – 400ms 100ms – 350ms				
t _r	(10 ₋₅)ms				

* Courtesy of the International Standards Organization

The TPC1000 offers a three-stage transient protection process: low-pass filtering, passive clamping, and active clamping.

Figure 14: Three-Stage Transient Protection

The first stage is a waveform modification that employs a low pass filter to eliminate unwanted high frequencies from entering the system.

The second stage incorporates two high power 5000W transorbs in parallel that work by diverting any energy in excess of 100V to the common ground thus limiting the voltage into the active clamping stage.

The final stage involves active clamping with a surge stopper controller (SSC). The SSC regulates the output to a maximum of 33V during a transient event by controlling the gate of a clamping N-channel MOSFET allowing the TPC1000 to continue regulating.

The SSC has a built in timer that starts when a transient is detected and times inversely proportional to the clamping stress on the clamping MOSFET. If the SSC timer expires it turns the clamping MOSFET off resulting in the TPC1000 drawing power from the backup ultra capacitors to maintain the output load. After a cool down period, the SSC re-enables the clamping MOSFET. If the input voltage is within normal operating levels then normal operation continues however if the input voltage remains above the maximum 33V the SSC timer starts timing again.

Warranty and Product Information

Tri-M Technologies Inc. (Limited Warranty)

Unless otherwise agreed to in writing, Tri-M Technologies Inc. (Tri-M) warrants to the original purchaser that its products will be free from defects in material and workmanship for a period of (1) one year from the date of shipment. Tri-M's obligation under this warranty is limited to replacement or repair at its option and its designated site. Any such products must be returned within the warranty period to Tri-M in Tri-M approved packaging with a Tri-M-assigned RMA (Return Material Authorization) number referenced on the shipping documents.

All warranties are void if there is evidence of misuse, tampering, or attempted repair of parts. Any returns must be accompanied by a return material authorization (RMA) number issued by Tri-M. Purchaser shall prepay transportation to Tri-M's designated site. If returned products are repaired or replaced under the terms of this warranty, Tri-M shall pay return transportation charges.

In no case will Tri-M be held liable for consequential damages arising out of its obligations under this warranty or the failure or incorrect use of any of its products. This warranty is in lieu of all warranties, either express or implied, including, without limitation, any implied warranty of merchantability or fitness for any particular purpose, and of any other obligation on the part of Tri-M.

Disclaimer

No part of this document may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any language or computer language, in any form or by any means, electronic, mechanical, magnetic, optical, chemical, manual, or otherwise, without the express written permission of Tri-M Technologies Inc.

Tri-M Technologies Inc. (Tri-M) makes no representations or warranties with respect to the contents of this manual, and specifically disclaims any implied warranties of merchantability or fitness for any particular purpose. Tri-M shall under no circumstances be liable for incidental or consequential damages or related expenses resulting from the use of this product, even if it has been notified of the possibility of such damages. Tri-M reserves the right to revise this publication from time to time without obligation to notify any person of such revisions.

Copyright © 2012 Tri-M Technologies Inc. All rights reserved.

Frequently Asked Questions (FAQ)

- 1. What is the mating connector for relay connectors (CN1, CN2)?
- 2. Is the TPC1000 RoHS Compliant?

All Tri-M's products are RoHs, and we also provide other customisable options depending on your requirements.

3. What is the MTBF?

The TPC1000 MTBF is rated at xx,xxxx hours at 30°C (86°F) ambient temperature.

4. How do I request an RMA or warranty issue?

To request an RMA, please fill out the online form on our website at www.tri-m.com/support .

What if I have a technical or specific question?

For technical support, please see "Contact Information" on page 2.